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Abstract. We consider the one-dimensional Ising model which besides the interaction of 
nearest neighbours includes a long-range term. The latter is ferromagnetic while the 
nearest-neighbour interaction can have any sign. The crossover between short- and long- 
range interactions when varying the Hamiltonian parameters is analysed for such a model. 
For some values of the antiferromagnetic short-range interaction the transition from a 
ferro- to paramagnetic state is of first order. At the tricritical point where the transition 
order changes from second to first we obtain classical tricritical exponents. For a ferromag- 
netic short-range interaction the Curie temperature surpasses the transition temperature 
of the long-range model. 

There exists an interesting question in the theory of magnetism concerning how the 
properties of a system change during a continuously varying interaction between two 
qualitatively different lin.'ting cases. Stinchcombe [ 1,2], for example, has considered 
the crossover between the isotropic Heisenberg and anisotropic Ising behaviours of 
pure and diluted magnets. The crossover with respect to the anisotropy parameter for 
the X Y  model in a transverse field has been studied by Ray and Chakrabarti [3]. 
Boucher et a1 [4], involving experimental data for quasi-one-dimensional antiferromag- 
nets, have analysed the crossover between the isotropic Heisenberg and the anisotropic 
X Y  behaviour when varying an external magnetic field. Stinchcombe [5] has con- 
sidered the crossover between the one- and two-dimensional behaviours when switching 
on an interaction between Ising chains and also the crossover from two-dimensional 
to three-dimensional properties for layer Heisenberg systems. 

A dimensional crossover, when the space dimensionality continuously changes 
between three and four, has been considered by Rudnick and Nelson [6] for the 
Landau-Ginzburg-Wilson model and also by Rijpkema [7] for the Blume-Capel model. 

Joyce [8] has obtained quite interesting results for the Berlin-Kac spherical model 
with a ferromagnetic interaction of the type 9,,- l/r;+*, where d is the lattice 
dimensionality. As has been found, the Curie temperature and critical indices con- 
tinuously depend on the parameter A > 0. Analogous results have been obtained by 
Sak [9] for ferromagnets with the Joyce potential and A <2 .  

Crossovers corresponding to a change of Hamiltonian parameters or the space 
dimensionality should be distinguished from the crossover behaviour of the same 
model at a varying temperature. In the latter case one usually analyses the dependence 
of effective critical indices on temperature [6, 10, 113. An introduction of effective 
critical indices is justified by the fact that they are directly observed in experiments [ 121. 
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In the present paper we investigate a crossover of the type where Hamiltonian 
parameters are changing so that it undergoes a continuous transformation between the 
short- and long-range forms. A combination of short- and long-range potentials is 
quite realistic for some materials. Magnetic alloys in which there exists a spin-orbital 
interaction, besides the spin-spin interaction, may serve as an example [13]. The 
appearance of magnetic links with different interaction radii can be also due to the 
presence in a magnet of defects or boundaries [ 141. 

Let us consider the one-dimensional Ising model with the Hamiltonian 

N rv 
H = - 4ijsj~j - B 1 S, si = *l 

i J =  1 i = l  

in which the exchange integral is divided into two terms: 

4lj = I#] + ( 2 )  

where one term corresponds to the interaction of nearest neighbours 

Z i , j  adjacent 

0 otherwise 
I i J  = { (3) 

and the other term is the so-called long-range interaction which Lebowitz and Penrose 
[ 151 named the Kac potential, satisfying the properties 

lim $,, = 0 
N-CC 

In (3) and (4) 

I, $ €  (-CO, 

The constant I describes 

(4) 

+a). ( 5 )  

an input of the short-range interaction. When SI, = 0, only 
nearest neighbours are interacting; when I = 0, the system is purely of the long-range- 
interaction type; for I # 0, $,, # 0 an intermediate variant is realised. We shall consider 
here the case I < 0 as well, when the long-range interaction is ferromagnetic and the 
short-range one is antiferromagnetic. 

Several similar models have previously been considered. Thus, Baker [ 161 intro- 
duced an anisotropic Ising model with an infinitely long-range force in one direction 
and nearest-neighbour interactions in the other directions. He examined a simple 
quadratic lattice and a simple cubic lattice for just one case, when the intensities of 
the short-range and long-range interactions have equal signs and strengths. Baker gave 
an approximate solution expanding the partition function about the Weiss field and 
certifying the phase transition of the familiar Bragg- Williams type. Suzuki [ 171 men- 
tioned that a linear Ising model of the Baker kind could be solved exactly, but he did 
not analyse consequences of this. Nagle [ 181 analysed the existence of critical points 
for an Ising chain with positive short-range and negative long-range potentials. Later 
Nagle and Bonner [19] continued the consideration of such an Ising chain with 
competing interactions and with a term representing a staggered field acting in opposite 
directions on even and odd lattice sites. Theumann and Hoye [20] discussed the 
one-dimensional Ising model with a very long-range ferromagnetic interaction and 
first- and second-neighbour antiferromagnetic interactions. Hoye [21] also studied the 
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linear Ising model with nearest-neighbour repulsion and infinitely long-range attraction 
acting only on even-numbered sites. Lapushkin and Plechko [ 2 2 ]  treated the Ising 
chain with a positive long-range interaction when there is no phase transition. 

Substituting ( 2 )  into ( 1 )  we obtain the Hamiltonian 

For I < 0, slJ > 0 we return to the Nagle situation [ 181, while for I > 0, PIJ < 0 to the 
Lapushkin-Plechko case [ 2 2 ] .  

We calculate the dimensionless thermodynamic potential 

1 
y = - lim -In Tr exp(-HI@) =f/@ 

N-CC N 

in which 0 is the temperature, f is the free energy and the Boltzmann constant kB = 1. 
We take into account that in the thermodynamic limit the long-range part of the 
Hamiltonian becomes equivalent to the mean-field form. More correctly, the following 
rigorous equality [ 15,23-251 is valid: 

1 
y = - N-CC lim - N In Tr(-Happ/@) (7)  

where the approximating Hamiltonian 

contains the average spin 

and where the translational invariance has been taken into consideration. The thermo- 
dynamic potential (7 )  is valid for arbitrary space dimensionalities. In what follows 
we deal only with the one-dimensional case. Then, using the transfer-matrix technique, 
we obtain 

7 

y = - T - l n  g - a -  [ cosh ( - 2c; ‘) + [ sinh2( y) + exp( - $ ) ] ‘ ’ 2 }  

where 

For the order parameter ( 9 )  we obtain 

(+ = [ sinh’( y) + exp( -$)I - I ”  sinh - 2a+ h 
T ’  

The critical temperature satisfying the conditions ac = 0, h, = 0, is defined by the 
equation 

(13 )  Tc = 2 exp(2g/ T c )  

which may be written as 

0, = 2 8  exp(21/0,) .  
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In the short-range limit the critical temperature is 

0 , = 0  9 = 0  

0, = 2 9  I = O .  

as it should be. In the mean-field case it is 

From equation (13) it follows that non-trivial solutions for the critical temperature 
exist if 

T,> 2/e g > - l / e  (14) 

which yields 

TC+2g>0. 

Therefore 

and thus the critical temperature is a monotonic function of g. Under g >> 1 this 
temperature can greatly surpass the mean-field transition temperature 

Under negative values of I the ferro-paramagnetic transition can become of first 
order. The change of transition order takes place at T = T, defined by the equation 

Such a point separating the first-order line from the critical line has been called the 
tricritical point by Griffiths [26,27]. The appearance of this point is due to the presence 
in the Hamiltonian of competing interactions having different signs. There are other 
examples when tricritical points occur, again because of the competition of two-sign 
potentials. Thus, Krinsky and Furman [28] have considered a spin-1 Ising model 
containing a biquadratic exchange, a non-symmetric triple exchange and a one-size 
anisotropy as well as a standard exchange interaction. Tricriticality has been found 
and analysed by Sarbach and Fisher [29] for a many-component system with a 
Hamiltonian including, in addition to the usual exchange and external field, one-size 
anisotropies of second, fourth and sixth orders in powers of spin, and  a cubic field 
term. An excellent review on the theory of tricritical points has been given by Lawrie 
and Sarbach [30].  

In  our case (15) gives for the tricritical point 

T, = 2 / ~ 3  g,= -In3/2&. (16) 
At the tricritical temperature the critical exponents, as is known [30],  have jumps. We 
can check this by calculating the asymptotic behaviour of thermodynamic characteris- 
tics for 

~ = ( 0 - @ , ) / 0 , = ( T -  T,)/T,+-O. 

The behaviour of the specific heat is given by 
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For the order parameter (12) we find 

where the critical amplitude is given by 

A, = 6( T, + 2g)/  (3 Tf - 4).  

For the susceptibility we obtain 

~ ' A * ( - T ) - '  v g  

where 

A, = T,/4( T, + 2 g ) .  

23 1 

(18) 

Therefore at the usual critical point the critical exponents a, p and y for the specific 
heat C,  - ( - T ) - ~ ,  the order parameter U - ( - T I ' ,  and the susceptibility x - ( --T)-' 

have their classical values: 

cy = o  p = ;  y = l .  

At the tricritical point (16) these indices change by jumping to the classical tricritical 
exponents: 

y, = 1. (20) p =1 

a + 2 p +  y = 2 = a , + 2 p 1 +  y,. 

t 4  
cy = i  I 2  

The Rushbrooke inequality always holds as the equality 

The analysis given above for zero external field shows that there are two limiting 
values of the parameter g :  

go = - l / e  = -0.368 

and 

g,  = -In 3 / 2 f i =  -0.317. 

When g S g o ,  there is no ferromagnetism in the system. In the region go < g < g , ,  the 
ferro-paramagnetic transition is of first order. The point g = g,  is the tricritical one. 
If g > g, the usual second-order transition occurs. 

The critical behaviour of the model considered may also be investigated by means 
of the Landau expansion for the thermodynamic potential (10): 

y = y ( g ,  T, U ) = y ( g ,  T , O ) + a ( g ,  T ) U ' + b ( g ,  T ) u 4 + c ( g ,  T ) a ' + + o ( ~ * )  

in which 

a ( g ,  T)='(')'[ 4 T  T-2erp($)] 

b ( g ,  T) = L( 4! &)' T exp( $) [ 3 exp( $) - 11 

c ( g ,  T) = -!- ('> ' ex p( $) [ - 1 + 30 ex p( $) - 45 ex p( :) 1. 
6 !  T 
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A line of critical points T, = T,( g)  determined by 

a(g, T,) = 0 

a(g, Tt) = 0 = b(g,  Tt) 

b(g ,  T,) ’ 0 
is given by (13). This line ends when 

which leads the tricritical point ( 16). 
Although the model considered is quite simple, it possesses non-trivial properties 

because of the competition between short- and long-range interactions. 
Moreover, even this simple model can find practical applications when interpreting 

experimental data for quasi-one-dimensional magnets or for treating some other one- 
dimensional systems, such as molecular chains which can be described by Ising-type 
models. 
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